PDE-constrained optimization in medical image analysis
نویسندگان
چکیده
PDE-constrained optimization problems find many applications in medical image analysis, for example, neuroimaging, cardiovascular imaging, and oncological imaging. We review related literature and give examples on the formulation, discretization, and numerical solution of PDE-constrained optimization problems for medical imaging. We discuss three examples. The first one is image registration. The second one is data assimilation for brain tumor patients, and the third one data assimilation in cardiovascular imaging. The image registration problem is a classical task in medical image analysis and seeks to find pointwise correspondences between two or more images. The data assimilation problems use a PDE-constrained formulation to link a biophysical model to patient-specific data obtained from medical images. The associated optimality systems turn out to be sets of nonlinear, multicomponent PDEs that are challenging to solve in an efficient way. The ultimate goal of our work is the design of inversion methods that integrate complementary data, and rigorously follow mathematical and physical principles, in an attempt to support clinical decision making. This requires reliable, high-fidelity algorithms with a short time-to-solution. This task is complicated by model and data uncertainties, and by the fact that PDE-constrained optimization problems are ill-posed in nature, and in general yield high-dimensional, severely ill-conditioned systems after discretization. These features make regularization, effective preconditioners, and iterative solvers that, in many cases, have to be implemented on distributed-memory architectures to be practical, a prerequisite. We showcase state-of-the-art techniques in scientific computing to tackle these challenges.
منابع مشابه
A preconditioning technique for a class of PDE-constrained optimization problems
We investigate the use of a preconditioning technique for solving linear systems of saddle point type arising from the application of an inexact Gauss–Newton scheme to PDE-constrained optimization problems with a hyperbolic constraint. The preconditioner is of block triangular form and involves diagonal perturbations of the (approximate) Hessian to insure nonsingularity and an approximate Schur...
متن کاملTerascale Optimal PDE Simulations (TOPS), An Enabling Technology Center Scientific Discovery Through Advanced Computing: Integrated Software Infrastructure Centers
iii 1 Background and Significance 1 2 Preliminary Studies 3 2.1 PDE Time Integrators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 PDE Nonlinear Solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.3 PDE-constrained Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.4 Linear Solvers . . . ...
متن کاملTowards Matrix-Free AD-Based Preconditioning of KKT Systems in PDE-Constrained Optimization
The presented approach aims at solving an equality constrained, finite-dimensional optimization problem, where the constraints arise from the discretization of some partial differential equation (PDE) on a given space grid. For this purpose, a stationary point of the Lagrangian is computed using Newton’s method, which requires the repeated solution of KKT systems. The proposed algorithm focuses...
متن کاملAll-at-once preconditioning in PDE-constrained optimization
The optimization of functions subject to partial differential equations (PDE) plays an important role in many areas of science and industry. In this paper we introduce the basic concepts of PDE-constrained optimization and show how the all-at-once approach will lead to linear systems in saddle point form. We will discuss implementation details and different boundary conditions. We then show how...
متن کاملImage Restoration Using A PDE-Based Approach
Image restoration is an essential preprocessing step for many image analysis applications. In any image restoration techniques, keeping structure of the image unchanged is very important. Such structure in an image often corresponds to the region discontinuities and edges. The techniques based on partial differential equations, such as the heat equations, are receiving considerable attention i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2018